Federal Law (USA) restricts this device to sale by or on the order of a physician with appropriate training.
Physician Checklist

The physician must:

- have sufficient experience in performing procedures within the uterine cavity, such as IUD insertion or dilation and curettage (D&C) and with adequate training, knowledge and familiarity using the NovaSure system;
- review and be familiar with the instructions and complete either NovaSure training or be trained by a qualified physician;
- be aware of the appropriate sequence of actions detailed in the Instructions for Use and Troubleshooting sections of this manual to abort, resolve and/or continue the treatment in the event the system detects a loss of CO₂ during the cavity integrity assessment (CIA), which indicates a possible uterine perforation.

Adjunct personnel must be familiar with these instructions and other training materials prior to using the NovaSure system.

System Description

The NovaSure® impedance controlled endometrial ablation system consists of the NovaSure disposable device with connecting cord, NovaSure RF controller (controller), NovaSure® CO₂ canister, desiccant, foot switch and power cord, which are designed to be used together as a system.

NovaSure Disposable Device Description

The NovaSure disposable device consists of a single-patient use, conformable bipolar electrode array mounted on an expandable frame that can create a confluent lesion on the entire interior surface area of the uterine cavity. The disposable device is inserted transcervically.
into the uterine cavity, and the sheath is retracted to allow the bipolar electrode array to be deployed and conform to the uterine cavity.

The bipolar electrode array is formed from a metalized, porous fabric through which steam and moisture are continuously suctioned from the desiccated tissue. The disposable device works in conjunction with a dedicated NovaSure RF controller to perform customized, global endometrial ablation in an average of approximately 90 seconds without the need for concomitant hysteroscopic visualization or endometrial pretreatment. The specific configuration of the bipolar electrode array and the predetermined power of the controller create a controlled depth of ablation in uteri sounding less than or equal to 10 cm and having a minimum cornu-to-cornu distance of 2.5 cm.

During the ablation process, the flow of radio frequency (RF) energy vaporizes and/or coagulates the endometrium regardless of its thickness and desiccates and coagulates the underlying, superficial myometrium. The controller automatically calculates the optimal power level (W) required for the treatment of the uterine cavity, based on uterine size. As tissue destruction reaches an optimal depth, increasing tissue impedance causes the controller to automatically terminate power delivery, thereby providing a self-regulating process. Blood, saline and other liquid present in the uterine cavity at the time of the procedure, as well as vapor liberated from the desiccated tissue, are evacuated by continuous, automatic suctioning.

The disposable device is connected to the controller via a cord containing the RF cable, suction tubing used for pressure monitoring during the cavity integrity assessment cycle and for suction during the ablation cycle, and vacuum feedback tubing used for carbon dioxide delivery during the cavity integrity assessment cycle and vacuum monitoring during the ablation cycle.

NovaSure RF Controller

The NovaSure RF controller is a constant power output generator with a nominal maximum power delivery capability of 180 watts. The controller automatically calculates the power output based on the uterine cavity length (sound measurement minus the length of the endocervical canal) and width measurements that the user key-enters into the controller. Monitoring tissue impedance during the ablation process automatically controls the depth of endo-myometrial ablation. The NovaSure® procedure self-terminates once endometrial vaporization and superficial myometrial desiccation have reached 50 ohms of impedance at the tissue-electrode interface, or when the treatment timer reaches two minutes. Integral to the controller is the cavity integrity assessment system (CIA) which is designed to determine whether there is a defect or perforation in the wall of the uterus. After the disposable device is placed into the uterine cavity, CO₂ is delivered through the central lumen of the disposable device into the cavity, via the vacuum feedback tubing, at a safe flow rate and pressure. If the CO₂ pressure in the cavity is maintained for a short period of time, indicating that the uterine cavity is intact, then the CIA will allow the NovaSure RF controller to be enabled and proceed with the treatment phase. A vacuum pump contained within the NovaSure RF controller creates and maintains a vacuum in the uterine cavity throughout the endometrial ablation procedure. Once the vacuum is stabilized, the vacuum level is monitored throughout the remainder of the ablation process.

NovaSure Suction Line Desiccant Description

The NovaSure suction line desiccant is a non-sterile, single-patient use component that the user attaches in-line with the suction tubing, prior to connecting the disposable device to the NovaSure RF controller. The desiccant absorbs the moisture removed from the uterine cavity via the suction tubing during the ablation procedure.

NovaSure Foot Switch Description

The NovaSure foot switch is a pneumatic switch that connects to the NovaSure RF controller front panel. It is used to activate the NovaSure RF controller and does not contain any electrical components.

NovaSure CO₂ Canister Description

The NovaSure CO₂ canister is a 16-gram, medical grade CO₂ canister. It is attached to the regulator located on the back panel of the NovaSure RF controller prior to applying line voltage to the NovaSure RF controller. The CO₂ is used by the cavity integrity assessment system to pressurize the uterine cavity.
NovaSure® AC Power Cord

Description
The NovaSure AC power cord, a medical grade cord, connects the NovaSure RF controller to the appropriate line voltage. The receptacle for the power cord, the power input module, is located on the back panel of the NovaSure RF controller.

INDICATIONS
The NovaSure system is intended to ablate the endometrial lining of the uterus in pre-menopausal women with menorrhagia (excessive bleeding) due to benign causes for whom childbearing is complete.

CONTRAINDICATIONS
The NovaSure impedance controlled endometrial ablation system is contraindicated for use in:

- a patient who is pregnant or who wants to become pregnant in the future. **Pregnancies following ablation can be dangerous for both mother and fetus.**
- a patient with known or suspected endometrial carcinoma (uterine cancer) or pre-malignant conditions of the endometrium, such as unresolved adenomatous hyperplasia.
- a patient with any anatomic condition (e.g., history of previous classical cesarean section or transmural myomectomy) or pathologic condition (e.g., long-term medical therapy) that could lead to weakening of the myometrium.
- a patient with active genital or urinary tract infection at the time of the procedure (e.g., cervicitis, vaginitis, endometritis, salpingitis or cystitis).
- a patient with an intrauterine device (IUD) currently in place.
- a patient with a thermally conductive object (e.g., metal implant) present in the uterus or in the uterine cavity, where the object could potentially come in direct contact with or close proximity to the heat generating portion of the endometrial ablation device. If this occurs, heat will be drawn away from the intended treatment area toward other tissue and/or organs in contact with the conductive object, which may be sufficient to cause localized burns.
- a patient with a uterine cavity length less than 4 cm. The minimum length of the electrode array is 4 cm. Treatment of a uterine cavity with a length less than 4 cm will result in thermal injury to the endocervical canal.
- a patient with a uterine cavity width less than 2.5 cm, as determined by the WIDTH dial of the disposable device following device deployment.
- a patient with active pelvic inflammatory disease.

WARNINGS

FAILURE TO FOLLOW ANY INSTRUCTIONS OR FAILURE TO HEED ANY WARNINGS OR CAUTIONS COULD RESULT IN SERIOUS PATIENT INJURY.

THE NOVASURE DISPOSABLE DEVICE MUST BE USED ONLY IN CONJUNCTION WITH THE NOVASURE RF CONTROLLER.

THE NOVASURE PROCEDURE IS INTENDED TO BE PERFORMED ONLY ONCE DURING A SINGLE OPERATIVE VISIT. THERMAL INJURY TO THE BOWEL MAY OCCUR WHEN MULTIPLE NOVASURE THERAPY CYCLES ARE PERFORMED DURING THE SAME OPERATIVE VISIT.

Uterine Perforation

- Use caution not to perforate the uterine wall when sounding, dilating or inserting the disposable device.
- If the disposable device is difficult to insert into the cervical canal, use clinical judgment to determine whether or not further dilation is required.
- The NovaSure system performs a cavity integrity assessment (CIA) to evaluate the integrity of the uterine cavity and sounds an alarm warning of a possible perforation prior to treatment (Step 2.36). (Although designed to detect a perforation of the uterine wall, it is an indicator only and it might not detect all perforations under all possible circumstances. Clinical judgement must always be used.)
- If a uterine perforation is suspected, the procedure should be terminated immediately.
- If the cavity integrity assessment fails after reasonable attempts implement the troubleshooting procedures (step 2.36), abort the procedure.
- For patients in whom the procedure was aborted due to a suspected uterine wall perforation, a work-up for perforation should be considered prior to discharge.

General

- Endometrial ablation using the NovaSure® system is not a sterilization procedure. Therefore, the patient should be advised of appropriate birth control methods.
- Endometrial ablation does not eliminate the potential for endometrial hyperplasia or adenocarcinoma of the endometrium and may mask the physician’s ability to detect or make a diagnosis of such pathology.
- Endometrial ablation is intended for use only in women who do not desire to bear children because the likelihood of pregnancy is significantly decreased following the procedure. Pregnancy following ablation may be dangerous for both mother and fetus.
- Patients who undergo endometrial ablation procedures who have previously undergone tubal ligation are at increased risk of developing post ablation tubal sterilization syndrome which can require hysterectomy. This can occur as late as 10 years post procedure.

Technical

- Do not use the sterile, single-patient use disposable device if the packaging appears to be damaged or there is evidence of tampering.
- The disposable device is for single-patient use only. Do not reuse or re-sterilize the disposable device.
- If any hysteroscopy procedure is performed with hypotonic solution immediately prior to NovaSure® treatment, then the uterine cavity must be flushed with normal saline prior to treatment with the NovaSure system. The presence of hypotonic fluid may reduce the efficiency of the NovaSure system.
- Plugging the disposable device into the controller starts CO₂ flow to purge any air out of the disposable device and tubing. This purging operation takes approximately 10 seconds and must be performed with the disposable device external to the patient to eliminate the risk of air or gas embolism. The NovaSure® RF controller CAVITY ASSESSMENT LED flashes red and an audible pulsed tone sounds
The safety and effectiveness of the NovaSure system has not been fully evaluated in patients:

- with a uterine sound measurement greater than 10 cm;
- with submucosal fibroids that distort the uterine cavity;
- with bicornuate, septate or sub-septateuteri;
- with medical (e.g. GnRH agonist) or surgical pretreatment;
- who have undergone a previous endometrial ablation including the NovaSure® endometrial ablation procedure; or,
- who are post-menopausal.

Do not attempt to repair the controller if problems are suspected. Call Hologic technical support or a Hologic sales representative for instructions.

Cables to the disposable device should be positioned such that contact with patient or other leads is avoided.

The user should inspect the disposable device for damage prior to use.

The suction line desiccant is non-sterile, and the packaging should not be placed in the sterile field.

If the ARRAY POSITION LED light is illuminated, see the Troubleshooting section under “ARRAY POSITION LED illuminated.”

Do not use the NovaSure suction line desiccant if desiccant material is pink in color.

The disposable device must be external to (outside of) the patient before connecting the cord to the appropriate port on the front panel of the controller (step 2.15).

The carbon dioxide canister contains gas under high pressure.

CO₂ continuously flows from the time that the disposable device is plugged into the controller until the CIA portion of the procedure is complete. To minimize the duration of CO₂ flow and potential risk of embolism, perform the seating procedure immediately after inserting the disposable device and proceed directly from the seating procedure to the CIA.

Electrically conductive objects (e.g. monitoring electrodes from other devices) that are in direct contact with the electrode array of the disposable device or in close proximity to the electrode array may draw current away from the array. This may result in localized burns to the patient or physician or in distortion of the electrical field of the array, which would change the therapeutic effect (under-treatment or over-treatment). It may also result in distortion of the current in the conductive object, e.g. monitors may display false readings.

Grounding reliability is only achieved when equipment is connected to a receptacle marked “hospital grade”.

The cervical collar must be fully retracted to its proximal position in order to minimize the potential for damage to the sheath when closing the array.

NovaSure® 3-Year Clinical Data

Adverse Events

The NovaSure® system was evaluated in a randomized, prospective, multi-center clinical study of 265 patients with abnormal uterine bleeding comparing the NovaSure system to a control arm of wire loop resection of the endometrium followed by rollerball ablation.

<table>
<thead>
<tr>
<th>Table 1A. Intra-Operative Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Event</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Bradycardia</td>
</tr>
<tr>
<td>Uterine perforation</td>
</tr>
<tr>
<td>Cervical tear</td>
</tr>
<tr>
<td>Cervical stenosis</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
Nausea and vomiting were reported for 1.7% of the NovaSure patients. Cramping/pelvic pain was reported for 3.4% of the NovaSure patients.

Operative events include the following:
- Nausea and/or vomiting
- Pelvic pain/cramping
- Hemorrhage
- Pelvic inflammatory disease
- Endometritis
- Vaginal infection
- Urinary tract infection
- Hematometra
- Hysterectomy

Adverse Event

<table>
<thead>
<tr>
<th>NovaSure</th>
<th>Loop Resection Plus Rollerball</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=175 (%)</td>
<td>n=90 (%)</td>
</tr>
<tr>
<td>Pelvic pain/cramping</td>
<td>6 (3.4%)</td>
</tr>
<tr>
<td>Nausea and/or vomiting</td>
<td>3 (1.7%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9 (5.1%)</td>
</tr>
</tbody>
</table>

* Nine events reported in 6 (3.4%) patients
** Five events reported in 4 (4.4%) patients

Other Adverse Events

- post-ablation tubal sterilization syndrome
- pregnancy-related complications (NOTE: PREGNANCY FOLLOWING ENDOMETRIAL ABLATION IS VERY DANGEROUS FOR BOTH THE MOTHER AND THE FETUS.)
- thermal injury to adjacent tissue
- perforation of the uterine wall
- difficulty with defecation or micturition
- uterine necrosis
- air or gas embolism
- infection or sepsis
- complications leading to serious injury or death

Clinical Study

Purpose: Safety and effectiveness of the use of the NovaSure system was compared to wire loop resection of the endometrium followed by rollerball ablation in premenopausal women suffering from menorrhagia secondary to benign causes.

Pretreatment: Patients randomized into the NovaSure arm received no endometrial pretreatment (e.g. hormone, D&C or patient timing). Patients randomized into the control arm received wire loop resection as an endometrial pretreatment.

Study endpoints: The primary effectiveness measure was a validated menstrual diary scoring system developed by Higham (Higham JM, O’Brien PMS, Shaw RW Br J Obstet Gynaecol 1990; 97:734-9). Assessment of menstrual blood loss was performed using a pictorial blood loss assessment chart (PBLAC). Patient success was defined as a reduction in menstrual flow at 1 year post-procedure to a diary score of <75. Study success was defined as a statistical difference of less than 20% in patient success rates between the NovaSure impedance controlled endometrial ablation system and wire loop resection plus rollerball ablation. Patients were contacted at two and three years and asked to report of a list of questions regarding their bleeding over the previous 12 months. Each patient’s menstrual bleeding status was determined at two and three years using the one-year PBLAC score and bleeding pattern and bleeding as a reference. Thus, it was possible to directly compare a patient’s bleeding pattern or menstrual status at one year to the bleeding pattern at two and three years.

Secondary endpoints included anesthesia regimen, length of procedure and responses from a quality-of-life questionnaire. Safety evaluation was based on the adverse events reported during the study.

Methods: A randomized (2:1), prospective clinical study was conducted at 9 clinical sites and included 265 patients diagnosed with menorrhagia. Menstrual diary scores were collected pre-operatively and monthly for 12 months post-procedure. Patients were treated at any time in their menstrual cycle. None of the patients received hormonal pretreatment to thin the endometrial lining. Control patients received hysteroscopic wire loop resection of the endometrium as a mechanical means of endometrial pretreatment followed by rollerball ablation. Study subjects were required to meet the following key patient selection criteria:

- Vaginal discharge
- Vaginal bleeding/spotting

Anticipated Post-Procedural Complications

For any endometrial ablation procedure, commonly reported postoperative events include the following:

- Cramping/pelvic pain was reported for 3.4% of the NovaSure patients and 4.4% of the wire resection loop plus rollerball-treated patients within 24 hours of the procedure. Postoperative cramping can range from mild to severe. This cramping will typically last a few hours and rarely continues beyond the first day following the procedure.
- Nausea and vomiting were reported for 1.7% of the NovaSure patients and 1.1% of the wire loop resection plus rollerball patients within 24 hours of the procedure. When present, nausea and vomiting typically occur immediately following the procedure, are associated with anesthesia and can be managed with medication.
Inclusion criteria
- Refractory menorrhagia with no definable organic cause (dysfunctional uterine bleeding)
- Ages 25 to 50 years of age
- Uterine sound measurement of 6.0–10.0 cm (external os to internal fundus)
- Minimum PBLAC score of >150 for 3 months prior to study enrollment; or PBLAC score >150 for one month for women who:
 - had at least 3 prior months (documented) failed medical therapy;
 - had a contraindication to medical therapy; or
 - refused medical therapy.

Exclusion criteria
- Presence of bacteremia, sepsis or other active systemic infection
- Active or recurrent chronic pelvic inflammatory disease
- Patient with documented coagulopathies or on anticoagulants
- Symptomatic endometriosis
- Prior uterine surgery (except low segment cesarean section) that interrupts the integrity of the uterine wall e.g. transmural myomectomy or classical cesarean section
- Prior endometrial ablation
- Patient on medications that could thin the myometrial muscle, such as long-term steroid use
- Patient desire to have children or to preserve fertility
- Patient currently on hormonal birth control therapy or unwilling to use a non-hormonal birth control post-ablation
- Abnormal/obstructed cavity as confirmed by hysteroscopy, SIS or HSG. Specifically:
 - septate or bicornuate uterus or other congenital malformation of the uterine cavity
 - pedunculated, submucous leiomyomata or other leiomyomata which distort the cavity; polyps (larger than 2 cm) which are likely to be the cause of the patient's menorrhagia
 - presence of an IUD
- Suspected or confirmed uterine malignancy within the last five years as confirmed by histology
- Endometrial hyperplasia as confirmed by histology
- Unaddressed cervical dysplasia
- Elevated FSH levels consistent with ovarian failure >40 IU/ml
- Pregnancy
- Active sexually transmitted disease

Patient population: A total of 265 patients were enrolled in this study. Patients were between the ages of 25 to 50 with 46% under the age of 40 and 54% 40 years of age or older. There were no differences in demographic or gynecological history parameters between the treatment groups, between the age groupings or among the nine investigational sites.

Table 2. Patient Accountability

<table>
<thead>
<tr>
<th>Number of Patients</th>
<th>NovaSure</th>
<th>Wire Loop Resection Plus Rollerball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entered into Study (Intent-to-Treat population)</td>
<td>175</td>
<td>90</td>
</tr>
<tr>
<td>Aborted procedures*1</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>Treated</td>
<td>171</td>
<td>88</td>
</tr>
</tbody>
</table>

Additional treatment* 4 -2 -2
Hysterectomy*2 3 -2
Lost to follow-up* 5 -2 -2
Hodgkin's disease* 1 0
Pelvic Pain - administered leuprolide* 1 0

12-Month follow-up data available

Additional treatment*	157	82
Hysterectomy*2	-2	-1
Lost to follow-up*	-2	-5
Missed visit	-1	-1
Declined to participate*	-1	0
Pregnancy*	-1	0

24-Month follow-up data available

Additional treatment*	147	74
Hysterectomy*2	0	-4
Lost to follow-up*	-4	-2

36-Month follow-up data available

| Subject lost to follow-up at 24 mos., returned at 36 mos. | +1 | +1 |

Results

Primary effectiveness endpoint: bleeding score

Patient success at 12-months post-procedure is defined as a reduction in diary score from >150 pre-operatively to <75 post-procedure. Amenorrhea is defined as a score of 0. Success at 24 and 36 months, based on telephone questionnaires, is defined as elimination of bleeding or reduction to light or normal flow. Data presented in Table 3 (below) represent the clinical results based on the total number of 265 patients randomized (Intent-to-Treat group (ITT)) for the study. The worst-case scenario is presented whereby each of the discontinued patients (described in Table 2 for patient accountability) is counted as a “failure” for calculating the values listed in the table.

Table 3. Effectiveness: Success Rates—Intent-To-Treat Patients

<table>
<thead>
<tr>
<th>Months post ablation</th>
<th>NovaSure (n=175)</th>
<th>Wire Loop Resection Plus Rollerball (n=90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of successful patients</td>
<td>136</td>
<td>143</td>
</tr>
<tr>
<td>Study success rate</td>
<td>77.7%</td>
<td>81.7%</td>
</tr>
<tr>
<td># of patients with Amenorrhea</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>Amenorrhea rate</td>
<td>36.0%</td>
<td>36.6%</td>
</tr>
</tbody>
</table>

* Based on diary scores
** Based on telephone questionnaires
Secondary effectiveness endpoint: quality of life

Patient quality of life (QOL) was assessed by administering the quality of life questionnaire (SF-12) and the menstrual impact questionnaire prior to treatment and at 3, 6, 12, 24 and 36 months post-procedure. Table 4 shows the patient responses for both groups pre-operatively, where appropriate, and at 12, 24 and 36 months post-procedure.

Table 4. Effectiveness: Quality of Life (QOL)

<table>
<thead>
<tr>
<th></th>
<th>NovaSure</th>
<th>Wire Loop Resection Plus Rollerball</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients Responding to Quality of Life Questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>175</td>
<td>90</td>
</tr>
<tr>
<td>12 Months</td>
<td>154</td>
<td>82</td>
</tr>
<tr>
<td>24 Months</td>
<td>143</td>
<td>73</td>
</tr>
<tr>
<td>36 Months</td>
<td>139</td>
<td>67</td>
</tr>
<tr>
<td>Percent of Patients Satisfied Or Very Satisfied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Months</td>
<td>92.8%</td>
<td>93.9%</td>
</tr>
<tr>
<td>24 Months</td>
<td>93.9%</td>
<td>89.1%</td>
</tr>
<tr>
<td>36 Months</td>
<td>96.3%</td>
<td>89.7%</td>
</tr>
<tr>
<td>Percent of Patients Who Probably Or Definitely Would Recommend This Procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Months</td>
<td>96.7%</td>
<td>95.9%</td>
</tr>
<tr>
<td>24 Months</td>
<td>96.6%</td>
<td>94.5%</td>
</tr>
<tr>
<td>36 Months</td>
<td>97.8%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Percent of Patients with Dysemenorrhea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>57.1%</td>
<td>55.6%</td>
</tr>
<tr>
<td>12 Months</td>
<td>20.8%*</td>
<td>34.2%*\A</td>
</tr>
<tr>
<td>24 Months</td>
<td>20.3%*</td>
<td>30.1%*</td>
</tr>
<tr>
<td>36 Months</td>
<td>17.3%*</td>
<td>28.4%*</td>
</tr>
<tr>
<td>Percent of Patients with PMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>65.1%</td>
<td>66.7%</td>
</tr>
<tr>
<td>12 Months</td>
<td>36.4%*</td>
<td>35.4%*</td>
</tr>
<tr>
<td>24 Months</td>
<td>44.8%*</td>
<td>46.6%*</td>
</tr>
<tr>
<td>36 Months</td>
<td>34.5%*</td>
<td>41.2%*</td>
</tr>
<tr>
<td>Percent of Patients Reporting Sometimes, Frequently Or Always Have Difficulty Performing Work Or Other Activities Due to Menses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>66.3%</td>
<td>65.5%</td>
</tr>
<tr>
<td>12 Months</td>
<td>9.9%*</td>
<td>8.6%*</td>
</tr>
<tr>
<td>24 Months</td>
<td>14.5%*</td>
<td>15.0%*</td>
</tr>
<tr>
<td>36 Months</td>
<td>16.3%*</td>
<td>13.3%*</td>
</tr>
<tr>
<td>Percent of Patients Reporting Sometimes, Frequently Or Always Feel Anxious Due to Menses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>74.7%</td>
<td>68.9%</td>
</tr>
<tr>
<td>12 Months</td>
<td>23.6%*</td>
<td>18.5%*</td>
</tr>
<tr>
<td>24 Months</td>
<td>24.2%*</td>
<td>19.2%*</td>
</tr>
<tr>
<td>36 Months</td>
<td>18.7%*</td>
<td>19.1%*</td>
</tr>
<tr>
<td>Percent of Patients Reporting Sometimes, Frequently Or Always Miss Social Activities Due to Menses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-operatively</td>
<td>63.3%</td>
<td>62.2%</td>
</tr>
<tr>
<td>12 Months</td>
<td>8.5%*</td>
<td>8.6%*</td>
</tr>
<tr>
<td>24 Months</td>
<td>9.0%*</td>
<td>11.1%*</td>
</tr>
<tr>
<td>36 Months</td>
<td>8.1%*</td>
<td>10.8%*</td>
</tr>
</tbody>
</table>

Not all patients completed questionnaire
* Statistically significant difference from pre-operative response (Chi-Square; p < 0.05)
\A Statistically significant difference between NovaSure and Rollerball Groups (Chi-Square; p = 0.02)

Safety endpoint

Adverse event information is described in the “Adverse Events” section of this manual.

Secondary endpoint: procedure time

Procedure time, a secondary endpoint, was determined for each patient by recording the time of device insertion and the time of device removal. The mean procedure time for the NovaSure patients was significantly less than the procedure time for the rollerball group, (4.2 ± 3.5 minutes and 24.2 ± 11.4 minutes, respectively). Mean time for application of RF energy was 84.0 ± 25.0 seconds in a subset of monitored NovaSure patients (Table 5).

Table 5. Operative Procedure Time

<table>
<thead>
<tr>
<th>Operative Parameters</th>
<th>NovaSure n=175</th>
<th>Wire Loop Resection Plus Rollerball n=90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of treated patients</td>
<td>171</td>
<td>88</td>
</tr>
<tr>
<td>Procedure time minutes (± SD) (Device insertion to device removal)</td>
<td>4.2 ± 3.5**</td>
<td>24.2 ± 11.4**</td>
</tr>
<tr>
<td>Procedure time in seconds (±SD) (Time of energy delivery)</td>
<td>84.0 ± 25.0</td>
<td>ND#</td>
</tr>
</tbody>
</table>

* See Table 2 for patient accountability
** Statistically significant difference between treatment groups (Student’s t-test; p < 0.05)
\# Not determined

Secondary endpoint: anesthesia regimen

Anesthesia was left to the discretion of each patient, clinical investigator and attending anesthesiologist. For the NovaSure patients, 27.0% (47/174) had the procedure performed under general anesthesia or epidural and 73.0% (127/174) under local and/or IV sedation. One patient did not have a reported anesthesia regimen in this group. In the rollerball group, 82.2% (74/90) of the patients were treated under general anesthesia or epidural and 17.8% (16/90) under local and/or IV sedation (Table 6).

Table 6. Anesthesia Regimen

<table>
<thead>
<tr>
<th></th>
<th>NovaSure n=175</th>
<th>Wire Loop Resection Plus Rollerball n=90</th>
</tr>
</thead>
<tbody>
<tr>
<td>General or epidural</td>
<td>27.0%</td>
<td>82.2%</td>
</tr>
<tr>
<td>Local and/or IV sedation</td>
<td>73.0%</td>
<td>17.8%</td>
</tr>
</tbody>
</table>

* One patient did not have a reported anesthesia regimen.

Clinical observations

Hysterectomy

Fifteen women had a hysterectomy within the three years following the ablation procedure. Table 7 lists the reasons for hysterectomy.
Table 7. Hysterectomy

<table>
<thead>
<tr>
<th>Reason For Hysterectomy</th>
<th>NovaSure n=175</th>
<th>Wire Loop Resection Plus Rollerball n=90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma diagnosed at time of ablation procedure</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fibroids</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pelvic abscess</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Adenomyosis</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Hematometra</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11 (6.3%)</td>
<td>4 (4.4%)</td>
</tr>
</tbody>
</table>

7 Hysterectomies were in patients <40 years (7 NovaSure) and 8 hysterectomies were in patients >40 years (4 NovaSure; 4 Rollerball).

Patient Selection
Menorrhagia can be caused by a variety of underlying problems, including, but not limited to: endometrial cancer, myomas, polyps, drugs and dysfunctional uterine bleeding (anovulatory bleeding). Patients always should be screened and evaluated to determine the cause of excessive uterine bleeding before any treatment option is initiated. Consult medical literature relative to various endometrial ablation techniques, indications, contraindications, complications and hazards prior to the performance of any endometrial ablation procedure.

Patient Counseling
As with any procedure, the physician needs to discuss risks, benefits and alternatives with the patient prior to performing endometrial ablation. Patient’s expectations should be set in a way that the patient understands that the aim of the treatment is the reduction in bleeding to normal levels.

The disposable device is intended for use only in women who do not desire to bear children because the likelihood of pregnancy is significantly decreased following the procedure. Patients of childbearing capacity should be cautioned of potential complications, which may ensue if they should become pregnant. This counseling should include the need for post-procedure contraception where indicated. This procedure is not a sterilization procedure and subsequent pregnancies may be dangerous for the mother and fetus.

Vaginal discharge is typically experienced during the first few weeks following ablation and may last as long as a month. Generally, the discharge is described as bloody during the first few days; serosanguineous by approximately one week; then profuse and watery thereafter. Any unusual or foul-smelling discharge should be reported to the physician immediately. Other common post-procedural complications include cramping/pelvic pain, nausea and vomiting.

Uterine perforation should be considered in the differential diagnosis of any post-operative patient complaining of acute abdominal pain, fever, shortness of breath, dizziness, hypotension or any other symptom that may be associated with uterine perforation with or without damage to the adjacent organs of the abdominal cavity. Patients should be counseled that any such symptoms should be immediately reported to their physician.

Pretreatment Preparation of Patient
The NovaSure® impedance controlled endometrial ablation system successfully treats a uterine cavity over a range of endometrium thickness. The lining of the uterus does not have to be thinned prior to the procedure, and the procedure may be performed during either the proliferative or the secretory phase of the cycle. Although the safety and effectiveness of the NovaSure system has not been fully-evaluated in patients with medical or surgical pretreatment, it has been evaluated in a limited number of patients who had been pretreated with GnRH agonists with no complications or adverse events.

Active bleeding was not found to be a limiting factor when using the NovaSure system. It is recommended that a nonsteroidal anti-inflammatory drug (NSAID) be given at least one hour prior to treatment and continued postoperatively to reduce intraoperative and postoperative uterine cramping.

NovaSure Impedance Controlled Endometrial Ablation System Instructions For Use
Please read all instructions, cautions and warnings prior to use.

1.0 Set-up

![NovaSure RF Controller](image1)
![NovaSure Disposable Device](image2)
![NovaSure Power Cord](image3)
![NovaSure Suction Line Desiccant](image4)
![NovaSure CO₂ Canister](image5)

1.1 The following items are required when using the NovaSure system:
- one sterile, single-patient use NovaSure disposable device with connecting cord
- one NovaSure RF controller
- one NovaSure foot switch
- one NovaSure AC power cord
- one NovaSure non-sterile suction line desiccant assembly
- one NovaSure CO₂ canister.
1.2 Prepare the NovaSure RF controller. Place it on a small table to one side of the patient within visual field of the surgeon. Attach the AC power cord to the controller and plug it into the AC outlet.

1.3 Screw the CO₂ canister into the regulator on the back panel of the controller until tightened.

NOTE: Newer model controllers are not equipped with a knob on the regulator, thus allowing the CO₂ flow to be automatically regulated. If your controller is not equipped with a regulator knob, proceed to step 1.5.

1.4 Fully rotate the CO₂ regulator knob to the HI position.

NOTE: Newer model controllers are not equipped with a knob on the regulator, thus allowing the CO₂ flow to be automatically regulated. If your controller is not equipped with a regulator knob, proceed to step 1.5.

1.5 Press the toggle switch on the back panel of the controller into the “on” position.

1.6 Connect the foot switch to the appropriate port on the front panel of the controller.

2.0 Procedure

2.1 Prepare the patient for the anesthesia.

2.2 Place patient in dorsal lithotomy position.

2.3 Induce anesthesia according to standard practice.

2.4 Perform bimanual examination. Evaluate for severe anteversion or retroversion.

2.5 Prepare and drape patient similar to prep for D&C.

2.6 Insert a speculum into the vagina.

2.7 Grasp the cervix with a tenaculum.

2.8 Take a sound measurement of the uterus to measure the length from fundus to external cervical os. The efficacy of the NovaSure system has not been fully evaluated in patients with a uterine sound measurement greater than 10 cm.

2.9 Determine the length of the cervical canal and dilate canal to 8.0 mm.

2.10 Using the uterine sound and cervical canal measurements, consult the cavity length table (below) to obtain the appropriate cavity length settings. On the upper end of the table, dimensions have been adjusted to reflect the disposable device electrode length. Correct determination of the cavity length is important for safe and effective treatment. Overestimating the cavity length may result in thermal injury to the endocervical canal.

WARNING: Use caution not to perforate the uterine wall when sounding, dilating or inserting the disposable device.

<table>
<thead>
<tr>
<th>Uterine Sound (cm)</th>
<th>10</th>
<th>9.5</th>
<th>9</th>
<th>8.5</th>
<th>8</th>
<th>7.5</th>
<th>7</th>
<th>6.5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.5*</td>
<td>6.5*</td>
<td>6.5</td>
<td>6.5</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>6.5*</td>
<td>6.5*</td>
<td>6</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.5*</td>
<td>6.5</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>6</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The value of 6.5 is not intended to reflect the numerical difference between the sound length and the length of the cervical canal. The value 6.5 was entered because it represents the maximum length that the NovaSure array can be extended.

CONTRAINDICATION: Do not treat a patient with a uterine cavity length that is less than 4 cm, as cervical canal damage may occur.

NOTE: Patients with a uterine cavity length greater than 6.0 cm had observed success rates that were lower than overall study success rates.

2.11 Open the sterile NovaSure disposable device package. Place the disposable device with the connecting cord into the sterile field while being careful to keep the non-sterile suction line desiccant box out of the sterile field.

WARNING: Do not use the sterile single-patient use disposable device if the packaging appears to be damaged or there is evidence of tampering.
2.12 Open the non-sterile suction line desiccant box and pouch. Remove the red caps.
CAUTION: The suction line desiccant is non-sterile and the packaging should not be placed in the sterile field.
CAUTION: If the suction line desiccant is pink, then replace it prior to initiating the ablation procedure.

2.13 Connect the desiccant to the barbs on the suction tubing of disposable device. Ensure the barbs are fully inserted into the tubing on the desiccant.
2.14 **CAUTION:** Disposable device must be external to (outside of) the patient before performing step 2.15.
2.15 Connect the disposable device cord to the appropriate port on the front panel of the controller.

WARNING: Use caution not to perforate the uterine wall when sounding, dilating or inserting the disposable device.

2.16 Deploy the disposable device outside of the patient and ensure the controller ARRAY POSITION LED is extinguished when the array is opened. If the LED is not extinguished, close and open the disposable device again. If this does not resolve the problem, replace the disposable device.

2.17 Be certain the WIDTH dial reads greater than or equal to 4.0 cm.

NOTE: If the WIDTH dial reads less than 4.0 cm, close the disposable device and repeat step 2.16 above. If the WIDTH dial still reads less than 4.0 cm, open a new disposable device and return the old disposable device to Hologic technical support.

2.18 Unlock the disposable device by pressing the lock release button. Close the disposable device by holding the front handle stationary and gently pulling the rear handle backwards until the closed array indicator, located at the hinge of the front and rear handles, reads, “ARRAY CLOSED”. This indicates that the array has been retracted into the sheath and the disposable device is in the closed position.

WARNING: Plugging the NovaSure disposable device into the NovaSure RF controller starts CO₂ flow to purge any air out of the disposable device and tubing. The purging operation takes approximately 10 seconds and must be performed with the disposable device external to the patient. The NovaSure RF controller CAVITY ASSESSMENT LED flashes red and an audible pulsed tone sounds throughout the purge procedure. When the tone and the LED stop, it is safe to insert the NovaSure disposable device.
CAUTION: CO₂ continuously flows from the time that the disposable device is plugged into the controller until the CIA portion of the procedure is complete. To minimize the duration of CO₂ flow and potential risk of embolism, perform the seating procedure immediately after inserting the disposable device and proceed directly from the seating procedure to the CIA.

2.19 Make sure the array is completely enclosed by the external sheath.
2.20 Check that the WIDTH dial reads approximately 0.5 cm.
2.21 Using the uterine sound measurement and cervical canal measurements, consult the cavity length table (above) to obtain the appropriate cavity length settings as described in step 2.10 above.
CONTRAINDICATION: Do not treat a patient with a uterine cavity length that is less than 4 cm, as cervical canal damage may occur.

2.22 Using the cavity length table in section 2.10, key in the value obtained for length into the NovaSure RF controller length LED by depressing the UP/DOWN arrows.

2.23 Adjust and lock the cavity length setting feature on the disposable device to the value obtained above. (See step 2.21.) Ensure that the cervical collar is fully retracted to its proximal position.

2.24 Confirm that the cervix is dilated to 8.0 mm.

2.25 Maintain a slight traction on the tenaculum to minimize the angle of the uterus.

2.26 Angle the disposable device in-line with the axis of the uterus as the disposable device is inserted transcervically into the uterine cavity. By holding the front handle, advance the disposable device until the distal end of the sheath touches the fundus.

WARNING: If the disposable device is difficult to insert into the cervical canal, use clinical judgment to determine whether or not further dilation is required.

2.27 Maintain a reference point at the fundus. Slowly squeeze the handles (DO NOT LOCK) up to the point of increased resistance. DO NOT pull the disposable device back from the fundus. The WIDTH dial should read approximately 0.5 cm. At this point, the external sheath has been retracted.

2.28 Continue to slowly squeeze the disposable device handles together while gently moving the disposable device ~0.5 cm to and from the fundus and rotating the handle of the disposable device 45° counterclockwise from the vertical plane and 45° clockwise from the vertical plane until the handles lock. The WIDTH dial should read greater than 2.5 cm.

NOTE: Once the disposable device handles are locked, the uterus should move in conjunction with the disposable device.

2.29 Gently move the disposable device using anterior, posterior and lateral movements.

2.30 To complete placement, slightly pull back the disposable device until the WIDTH dial reading reduces by approximately 0.2–0.5 cm.

2.31 Hold the tenaculum, advance the disposable device firmly to the fundus, maintaining slight forward pressure. The WIDTH dial should read greater than or equal to the previous measurement.
ENGLISH

2.32 Slide the cervical collar forward using firm pressure on the tab on the cervical collar, until the cervical collar forms a seal against the external cervical os.

2.33 Read the cornu-to-cornu measurement (2.5 cm minimum) on the WIDTH dial indicator.

CONTRAINDICATION: Do not treat a patient with a uterine cavity width less than 2.5 cm, as determined by the WIDTH dial of the disposable device following device deployment.

CAUTION: If the ARRAY POSITION LED light is illuminated, see the Troubleshooting section under “ARRAY POSITION LED illuminated.”

2.34 Key in the value indicated on the WIDTH dial into the NovaSure RF controller width LED by depressing the UP/DOWN arrows.

2.35 The system can be operated in either automatic mode or semi-automatic mode. In automatic mode the ablation cycle will start automatically upon successful completion of the cavity integrity assessment (CIA). In semi-automatic mode the ablation cycle will not start automatically following a successful CIA.

NOTE: In some Model 09 RF controllers, a vacuum pre-check occurs automatically prior to initiation of the ablation cycle. The VACUUM LED will flash and an audible tone will be heard for up to 10 seconds during the vacuum pre-check.

A. Automatic mode
To operate the system in automatic mode, press the ENABLE button prior to beginning the CIA. Proceed to step 2.36, but do not follow step 2.37 if operating the system in automatic mode.

B. Semi-automatic mode
To operate the system in the semi-automatic mode, do not press the ENABLE button prior to beginning the CIA. Follow steps 2.36 and 2.37.

2.36 Begin the cavity integrity assessment (CIA) procedure by stepping on the foot switch once. The CAVITY ASSESSMENT LED flashes green in conjunction with an audible tone at a rate of once per second when the system is performing a CIA. The duration of the test will range between approximately 7 and 30 seconds. A steady green LED appears when the CIA has passed and the system can deliver RF energy. Power cannot be applied to the disposable device until the CAVITY ASSESSMENT LED is a steady green light.

If the cavity integrity assessment fails, then the CAVITY ASSESSMENT LED on the NovaSure RF controller will flash red, and a rapid audible tone will sound at a rate of four times per second.

NOTE: Correct placement of the electrode array against the fundus is important to safe and effective treatment. If part of the electrode array or the distal edge of the external sheath is seated in the endocervical canal during treatment, there is an increased risk of endocervical thermal injury.

INCORRECT PLACEMENT

CORRECT PLACEMENT
If the cavity integrity assessment fails, press the foot switch to stop the sound. Next:

A. If a perforation is suspected, the procedure should be terminated immediately.
B. If the test fails again, check for leaks in the system, and between the cervix and cervical collar. Be sure to check all tubing and luer connections, and ensure that a suction line desiccant has been installed. If the leak appears to be at the cervix and cannot be resolved by using the cervical collar, use another tenaculum to grasp the cervix around the sheath. Repeat the cavity integrity assessment by pressing the foot switch.

NOTE: CO₂ leakage may occur at the external cervical os due to the presence of an over-dilated cervix. Visible bubbles or the “hissing” sound of escaping gas may accompany CO₂ leakage under either of these conditions.

C. If the cavity integrity assessment fails after reasonable attempts to implement the troubleshooting procedures (step 2.36), abort the procedure.

NOTE: Removing the disposable device from the uterine cavity after completing a cavity integrity assessment will require an additional test to be performed upon disposable device re-insertion (whether or not the CIA previously passed) prior to initiating an ablation.

SEMI-AUTOMATIC MODE

When operating the system in semi-automatic mode, the ablation cycle will not start automatically after the successful completion of the CIA. Once a successful CIA has been completed, press the ENABLE button and depress the foot switch a second time to initiate the ablation cycle.

NOTE: In some Model 09 RF controllers, a vacuum pre-check occurs automatically prior to initiation of the ablation cycle. The VACUUM LED will flash and an audible tone will be heard for up to 10 seconds during the vacuum pre-check.

During the ablation cycle, a blue RF ON LED will illuminate. At the completion of the ablation cycle, the RF power delivery (RF ON LED), as well as suction, will switch off automatically. The physician can stop the progress of the procedure at any time by depressing the foot switch.

NOTE: RF power delivery can be stopped at any time by pressing the foot switch.

2.38 After automatic termination of the ablation cycle (approximately 90 seconds), fully retract the cervical collar by using the tab on the cervical collar. Fully retract the cervical collar by sliding it to its proximal position.

CAUTION: The cervical collar must be fully retracted to its proximal position in order to minimize the potential for damage to the sheath when closing the array.

2.39 Unlock the disposable device by pressing the lock release button. Close the disposable device by holding the front handle stationary and gently pulling the rear handle backwards until the closed array indicator, located at the hinge of the front and rear handles, reads “ARRAY CLOSED”. This indicates that the array has been retracted into the sheath and the disposable device is in the closed position. (See step 2.18.)

NOTE: If it is difficult to close and remove the disposable device, see the Troubleshooting section, “Difficulty closing and removing the disposable device post-ablation.”
ENGLISH

CAUTION: To avoid damaging the device, employ gentle technique when retracting the array.

2.40 Withdraw the disposable device from the patient.

NOTE: If a NovaSure disposable device is connected at the time the controller is powered up, the POST will not be performed and the controller will return to normal operation. If a device is connected during the POST sequence, the POST will terminate and the controller will return to normal operation.

The following procedure is used to execute the POST and display the actual value of Pc and Rs determined:

1. With the switch on the power input module in the off position, check to make sure a disposable device is not connected to the RF controller.
2. Depress and hold the length UP and length DOWN arrows simultaneously, then toggle the power switch at the power input module while continuing to depress the arrows. This step initiates the POST, which proceeds automatically.
3. Upon the completion of the POST (approximately 5 seconds), the RF controller will generate one audible tone, and then display the actual value of Pc for two seconds on the power set LED.
4. After two seconds elapse, the power set LED will change to display the actual value of Rs for two seconds.
5. The power set LED will then change to 00, and the RF controller will return to normal operation without further input from the user.

The acceptable limits on Pc = 180 W ± 10%. If Pc is not within specification, a system fault will occur. The actual value of Rs is for reference only.

NOTE: If a system fault occurs during the POST, toggle off the power at the power input module and repeat the POST. If a system fault occurs a second time, remove the RF controller from service and contact Hologic customer service.

CAUTION: Do not attempt to repair the controller if problems are suspected. Follow the troubleshooting guide in this manual. If problems persist, call Hologic technical support for instructions.

Sterile NovaSure disposable device: No maintenance is necessary. Single-patient use only. Do not reuse or re-sterilize the NovaSure disposable device.

NovaSure RF Controller LED Descriptions

The following is a description of the alert LEDs on the NovaSure RF controller.

CAVITY ASSESSMENT LED: illuminates in four modes:
1. Flashes red in conjunction with an audible tone at a rate of once per second for the first 10 seconds when the system is purging air out of the disposable device. After 10 seconds, the LED and audible tone will cease, although CO₂ will continue to flow out of the vacuum feedback line.
2. Flashes green in conjunction with an audible tone at a rate of once per second when the system is performing a cavity integrity assessment.
3. Steady green light appears when the cavity integrity assessment has passed and the system can deliver RF energy. Power cannot be applied to the disposable device until the CAVITY ASSESSMENT LED is a steady green.
4. Steady red lights and an audible tone at a rate of four times per second occur when the cavity integrity assessment has failed. The test may be tried again.

ENABLE LED: illuminates amber when the user presses the ENABLE button. Acts as a safety so that the NovaSure disposable device will not
accidentally activate when the foot switch is touched. The ENABLE LED
will not illuminate when the ARRAY POSITION LED is on.

RF ON LED: Illuminates blue when the ablation is proceeding (the foot
switch has been depressed to activate the NovaSure RF controller with
the NovaSure disposable device array in place in the uterus).

PROCEDURE COMPLETE LED: Illuminates when the tissue impedance
reaches 50 ohms and the ablation procedure runs a minimum of
30 seconds.

ARRAY POSITION LED: Illuminates red when one pole of the electrode
array may be in contact with another. This LED should be illuminated
when the array is not fully deployed. The ENABLE LED cannot be toggled
on, nor can power be delivered to the array when the ARRAY POSITION
LED is illuminated.

VACUUM LED: Illuminates in two conditions:

1. Flashes red accompanied by an audible tone while the system is
 stabilizing the vacuum level for up to 10 seconds before energy
delivery commences (only for Model 09 controllers with a vacuum
 pre-check function).
2. Illuminates red when the vacuum relief valve is stuck in the closed
 position, when a blockage is detected in the disposable device or the
 connection tubing or when the system has a leak. Such a situation
 might be created by:
 - an over-dilated cervix with poor contact between the cervical collar
 and the external os;
 - a poor luer connection at the vacuum feedback or suction flush port;
 - a poor attachment of the desiccant tube to the suction tubing;
 - an obstruction in the disposable device tubing; or
 - an obstruction in the disposable device.

SYSTEM FAULT LED: Illuminates red if the system faults or if there is a
self-diagnostic check failure with the system clock or power delivery. If
this event occurs, terminate the procedure immediately and contact an
authorized Hologic service representative for instructions.

CAVITY ASSESSMENT LED illuminated red
If the CAVITY ASSESSMENT LED is steady red, the cavity integrity
assessment has failed. If the cavity integrity assessment fails, then the
CAVITY ASSESSMENT LED on the NovaSure RF controller will flash red,
and a rapid audible tone will sound at a rate of four times per second.
The test may be tried again.

If a perforation is suspected, the procedure should be terminated
immediately.

If the cavity integrity assessment fails, press the foot switch to stop the
sound. The cause of the cavity integrity assessment failure is the inability
to pressurize the cavity. It may be caused by:

1. Device leak: ensure that the suction line desiccant filter has been
 installed. Check all tubing and luer connections to ensure that they are
 tightly connected.
2. Leak at the external os of the cervix: Look for visible bubbles or a
 “hissing” sound at the external os of the cervix.
 Use the tab on the cervical collar to advance the cervical collar
towards the external os of the cervix to ensure there is a tight seal.
 Test again. If the test fails again, use a second tenaculum to grasp
 the cervix around the sheath of the NovaSure disposable device. Test
 again.

If the VACUUM LED illuminates again:
- Disconnect the disposable device from the RF controller.
- Remove the disposable device from the patient, then;
- Exchange the disposable device with a new disposable device.
- Reattempt the ablation with the new device.

3. Uterine perforation: If a uterine perforation is suspected, the
 procedure should be terminated immediately.

NOTE: CO₂ leakage may occur at the external cervical os due to the
presence of an over-dilated cervix. Visible bubbles or the “hissing”
sound of escaping gas may accompany CO₂ leakage under either of
these conditions.

If the cavity integrity assessment fails after reasonable attempts to
implement the troubleshooting procedures (step 2.36), abort the
procedure.

NOTE: Removing the disposable device from the uterine cavity after
completing a cavity integrity assessment will require an additional
test to be performed upon disposable device re-insertion (whether
or not the CIA previously passed) prior to initiating an ablation.

VACUUM LED illuminated
The VACUUM LED illuminates when the vacuum level is outside its
specified range. This can occur as a result of one or more of the
following:

- an over-dilated cervix;
- poor contact between the cervical collar and the external cervical os;
- the vacuum relief valve is in the closed position;
- a poor connection in the luer connections below the disposable device handle;
- an obstruction in the disposable device filter(s) (two) or desiccant; or
- an obstruction within the disposable device.

To eliminate this condition, perform the following:

- Gently press a 2–3.5 mm uterine dilator or sound inside the vacuum
 relief valve.
- Check the cervical collar position, and reposition it if necessary. Use
 the tab on the cervical collar to advance the cervical collar towards the
 external os of the cervix to ensure there is a tight seal. Verify that air is
 not being drawn through the cervix by a loose fit between the cervical
 collar and the entrance to the cervical canal. If air is being drawn in
 through the cervical canal, try to reposition the cervical collar and
 disposable device shaft to prevent air ingress.

- Ensure the suction canister on the disposable device is vertical and the
device tubing is not draped over the patient’s leg.
- Check all tubing and luer connections to ensure that they are tightly
 connected. Check the luer connections used to flush the disposable
device on both the vacuum feedback and suction lines. These are
 located near the disposable device handle. Check the push-on tubing
 connectors at the desiccant tube. Replace the desiccant if it is pink.
 Ensure that the filter located near the disposable connection on the
 vacuum feedback line is tightened.
- Reattempt ablation.

If the problem persists, remove the disposable device from the patient.
Deploy the disposable device. Disconnect the luer on the vacuum
feedback line (the small diameter tubing). Flush the vacuum feedback
line using 40 cc of saline followed by 40–60 cc of air. Repeat this same
flushing procedure on the suction line. After performing the above
troubleshooting steps, reinsert the disposable device, press the ENABLE
button twice and step on the foot switch to reattempt the ablation.

If the VACUUM LED illuminates again:

- Disconnect the disposable device from the RF controller.
- Remove the disposable device from the patient, then;
- Exchange the disposable device with a new disposable device.
- Reattempt the ablation with the new device.
ENGLISH

If a vacuum alarm occurs with the new device, abort the procedure:

NOTE: Removing the disposable device from the uterine cavity after completing a CIA will require an additional CIA to be performed upon disposable device re-insertion (whether or not the CIA previously passed) prior to initiating an ablation.

CO₂ canister low or empty
The NovaSure RF controller will generate an audible tone at a rate of four times per second during this alarm condition. LEDs that were illuminated prior to the alarm will remain in the same state during the low CO₂ event. Pressing the foot switch will not turn off the audible alarm.

1. Replace the CO₂ canister to stop the audible tone.
NOTE: It is not necessary to remove the disposable device from the patient prior to replacing the canister.

2. Continue with the procedure.

ARRAY POSITION LED illuminated

1. Gently move the proximal end of the disposable device and observe if the ARRAY POSITION LED extinguishes. If it does not, proceed with the following:

2. Attempt gentle reseating of the NovaSure disposable device:
 A. Partially retract the array into the sheath by releasing the disposable device handle lock release button;
 B. Pull the disposable device back slightly from fundus;
 C. Slowly redeploy the disposable device array while gently rocking the disposable device back and forth and locking the disposable device handles; and
 D. Reseat the disposable device against fundus using the seating procedure described in section 2.0.

3. If the uterus is retroverted, take special care to avoid perforation. Apply gentle caudad traction to the cervix with the tenaculum, and elevate the disposable device handle upward toward the ceiling (in-line with the axis of the uterus) while performing the seating procedure.

4. If the ARRAY POSITION LED is still illuminated, fully retract the disposable device array and remove the disposable device from the patient.

5. Deploy the disposable device outside the patient’s body; ensure the electrode array is undamaged and that the ARRAY POSITION LED extinguishes.

6. Attempt reinsertion, redeployment and reseating of the disposable device using the seating procedure described in section 2.0.

7. If the ARRAY POSITION LED remains illuminated, replace with a new disposable device.

8. If the ARRAY POSITION LED remains illuminated with a new disposable device, terminate the procedure.

Additional Troubleshooting

Suspected uterine perforation

Prior to Application of Energy:
1. Terminate the procedure
2. Assure patient stability
3. Consider work-up for perforation
4. Reschedule procedure, if appropriate

During or after Application of Energy:
1. Terminate the procedure
2. Assure patient stability
3. Rule out visceral injury
4. Reschedule procedure, if appropriate

Array does not fully deploy and lock in uterus

1. Partially retract array into sheath (hold the front handle stationary and pull the rear handle back and away from the patient);
2. Reposition the disposable device in the cavity;
3. Redeploy the array in cavity;
4. If the disposable device does not lock, remove it from the uterus;
5. Inspect the disposable device for damage;
6. Attempt to open the disposable device and lock it outside the patient;
7. If damaged, the replace disposable device;
8. If the disposable device is not damaged, reinsert it into the patient’s uterine cavity and attempt deployment; and
9. If unable to deploy the disposable device to a minimum 2.5 cm cornu-to-cornu distance, terminate the procedure.

10. Consider uterine perforation as a possible cause for not deploying.

Difficulty closing and removing the disposable device post-ablation

Confirm that the lock release button is depressed:
- If so, gradually withdraw the disposable device from the patient.
- If not, press the lock release button and reattempt to close the disposable device. If it is still difficult to close, gradually withdraw the disposable device from the patient.

ENABLE LED will not illuminate

Be sure:
1. The ENABLE button is firmly depressed;
2. The NovaSure RF controller is plugged in;
3. The toggle switch at the back of the controller is on; and
4. The ARRAY POSITION LED is not illuminated.

PROCEDURE COMPLETE LED not illuminated at the end of a procedure

1. If power has not been applied for at least 30 seconds, the LED will not illuminate. Remove the NovaSure disposable device from the uterus after fully retracting the disposable device array into the sheath:
 A. Release the disposable device lock release button;
 B. Hold the disposable device front handle steady; and
 C. Pull the disposable device rear handle backward.

2. Inspect the disposable device for any damage. Fully deploy the electrode array outside the patient, demonstrating that the ARRAY POSITION LED does not illuminate.

3. If the disposable device is not damaged and the ARRAY POSITION LED extinguishes, reinsert, redeploy and reattempt treatment.

4. If the problem persists, replace the disposable device with a new disposable device.

5. Retattempt the procedure. If the problem persists, terminate the procedure.

RF ON LED will not illuminate

1. If the NovaSure RF controller is plugged in, switched on, the ENABLE LED is on and no power is delivered from the controller when the foot switch is depressed, check the foot switch connection. Also make sure the CAVITY ASSESSMENT LED is green.

2. If the problem persists, terminate the procedure.
UP/DOWN values will not illuminate when pressing the appropriate keys
Make sure that the disposable device is connected to the controller. The values will not illuminate unless the disposable device is properly connected to the controller.

Replacement Instructions
The NovaSure RF controller uses a pair of fuses that are located on a fuse carrier in the power input module. Type T5A, 250 V fuses are used. The module can be accessed by using a slotted screwdriver to pop open the fuse carrier door. If required, the fuse carrier may then be removed and the fuses changed. Assembly is the reverse of these steps. Any potentially defective NovaSure product must be returned to Hologic for evaluation. Follow the instructions at the end of this manual in the Service Returns section, for obtaining a returned materials authorization number (RMA #). Do not discard the NovaSure disposable device.

Specifications
The NovaSure disposable device does not contain latex.

NovaSure disposable device
1. The NovaSure disposable device is a Class III device by FDA regulation.
2. The NovaSure disposable device is a Class IIB device according to the MDD 93/42/EEC.
3. The NovaSure disposable device tip nominal diameter: 7.5 mm.
4. The NovaSure disposable device overall dimensions: 19” x 6” x 12” (48.3 cm x 15.2 cm x 5 cm).

NovaSure RF controller
1. The NovaSure RF controller is a Class I, defibrillator-proof Type BF instrument, according to IEC 60601-1.
2. The NovaSure RF controller is a Class III device by FDA regulation.
3. The NovaSure RF controller is a Class IIB device according to the MDD 93/42/EEC.
4. The RF controller has been tested and found to comply with the limits for medical devices according to IEC 60601-1-2. These limits are designed to provide reasonable protection against harmful interference in a typical medical installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to other devices in the vicinity. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to other devices, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
 • Re-orient or relocate the receiving device
 • Increase the separation between equipment
 • Connect the equipment into an outlet on a circuit different from that to which the other device(s) is/are connected.
 • Contact Hologic technical support (or the manufacturer of the other equipment) for assistance.
5. The controller meets the requirements of IEC 60601-1/UL 60601-1, IEC 60601-2-2 and CSA C22.2 No.601.1.
6. Shipment of the controller should be done only in the original Hologic packaging. Environmental requirements for use, shipping and storage are indicated below.
7. The absolute maximum peak voltage generated by the NovaSure RF controller is 153 volts.
8. The absolute maximum peak power generated by the NovaSure RF controller is 216 watts.
10. Height: 12.5”; Width: 7.5”; Depth: 14.5” (32 cm x 19 cm x 35.5 cm).
11. The maximum pressure of CO₂ delivered from the NovaSure RF controller and disposable device shall be 90 ± 10 mmHg. The maximum flow rate of CO₂ from the NovaSure RF controller connected to the disposable device shall be 95 ± 15 ml/min. (The maximum flow rate of CO₂ from the NovaSure RF controller without a NovaSure disposable device attached is 117 ± 13 ml/ min.)
Non-operating, packaged conditions

<table>
<thead>
<tr>
<th>Attitude</th>
<th>0 to 40,000 ft (0 to 12,120 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>–30° C to 60° C (–22° F to 140° F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>85% RH, 72 hr, at 38° C (non-condensing)</td>
</tr>
</tbody>
</table>

Guidance and manufacturer’s declaration – electromagnetic emissions and immunity

The NovaSure RF controller with cavity integrity assessment is intended for use in the electromagnetic environment specified below. The customer or user of the NovaSure RF controller with cavity integrity assessment should ensure that it is used in such an environment.

Electromagnetic emissions

<table>
<thead>
<tr>
<th>Emissions Test</th>
<th>Compliance</th>
<th>Electromagnetic Environment – Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Emissions</td>
<td>Group 2</td>
<td>The NovaSure RF controller with cavity integrity assessment must emit electromagnetic energy in order to perform its intended function. Nearby electronic equipment may be affected.</td>
</tr>
<tr>
<td>CISPR 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Emissions</td>
<td>Class B</td>
<td>The NovaSure RF controller with cavity integrity assessment is suitable for use in all establishments other than domestic, and may be used in domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes, provided the following warning is heeded:</td>
</tr>
<tr>
<td>CISPR 11</td>
<td></td>
<td>WARNING: This equipment/system is intended for use by healthcare professionals only. This equipment/system may cause radio interference or may disrupt the operation of nearby equipment. It may be necessary to take mitigation measures, such as re-orienting or relocating the NovaSure RF controller or shielding the location.</td>
</tr>
<tr>
<td>Harmonic emissions IEC 61000-3-2</td>
<td>Class A</td>
<td>Complies</td>
</tr>
<tr>
<td>Voltage fluctuations/flicker emissions IEC 61000-3-3</td>
<td>Complies</td>
<td></td>
</tr>
</tbody>
</table>

Electromagnetic immunity

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>EN/IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment – Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD) EN/IEC 61000-4-2</td>
<td>±6 kV Contact</td>
<td>±6 kV Contact</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>Electrical fast transient/burst EN/IEC 61000-4-4</td>
<td>±2 kV for power supply lines</td>
<td>±2 kV for power supply lines</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Conducted RF IEC 61000-4-6</td>
<td>3 Vrms</td>
<td>3 Vrms</td>
<td></td>
</tr>
<tr>
<td>conducted EN/IEC 61000-4-6</td>
<td>3 Vrms</td>
<td>3 Vrms</td>
<td></td>
</tr>
</tbody>
</table>
Immunity Test | EN/IEC 60601 Test Level | Compliance Level | Electromagnetic Environment – Guidance
--- | --- | --- | ---
Radiated RF IEC 61000-4-3 | 3 Vrms | 3 Vrms | $d = 1.2\sqrt{P} \quad 80 \text{ MHz to } 800 \text{ MHz}$
$d = 2.3\sqrt{P} \quad 800 \text{ MHz to } 2.5 \text{ GHz}$
where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separation distance in meters (m).
Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey,\(^a\) should be less than the compliance level in each frequency range.\(^b\)
Interference may occur in the vicinity of equipment marked with the following symbol: $\mathbf{\text{!}}$

NOTE 1: At 80 MHz and 800 MHz, the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Recommended separation distances between portable and mobile RF communications equipment and the NovaSure RF controller

The NovaSure RF controller with cavity integrity assessment is intended for use in the electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the NovaSure RF controller can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the NovaSure RF controller as recommended in the following table, according to the maximum output power of the communications device.

Rated maximum output power of transmitter W	Separation distance according to frequency of transmitter m			
150 kHz to 80 MHz	$d = 0.01$	$d = 0.12$	$d = 0.12$	$d = 0.23$
80 MHz to 800 MHz	$d = 0.1$	$d = 0.38$	$d = 0.38$	$d = 0.73$
800 MHz to 2.5 GHz	$d = 1$	$d = 1.2$	$d = 1.2$	$d = 2.3$
10	$d = 10$	$d = 3.8$	$d = 3.8$	$d = 7.3$
100	$d = 100$	$d = 12$	$d = 12$	$d = 23$

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE 1: At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Cleaning and Sanitizing

The use of nonflammable agents for cleaning and sanitizing is recommended. Flammable agents or solvents for cleaning or sanitizing should be allowed to evaporate before use of the NovaSure system.

The NovaSure RF controller is not sterile. Cleaning should be done using a mild detergent and water solution to wipe surface areas only. Do not immerse unit in liquid or introduce liquid into the cooling vents or RF cable areas.

The NovaSure disposable device is a sterile disposable device for single-patient use only.

- Do not use if the packaging is opened or damaged.
- Do not reuse or re-sterilize the disposable device.
- Do not sterilize any component of the NovaSure impedance controlled endometrial ablation system.
Parts List

Ordering information and related parts and accessories

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC2009-115</td>
<td>NovaSure® RF Controller, Model 09</td>
</tr>
<tr>
<td>RFC2009-230</td>
<td>NovaSure® RF Controller, Model 09</td>
</tr>
<tr>
<td>RFC-PC115</td>
<td>Power Cord, 115 Volts, North America</td>
</tr>
<tr>
<td>RFC-PC230</td>
<td>Power Cord, 230 Volts, Europe</td>
</tr>
<tr>
<td>RFC-PC230UK</td>
<td>Power Cord, 230 Volts, United Kingdom/Ireland</td>
</tr>
<tr>
<td>RFC-PC230SZ</td>
<td>Power Cord, 230 Volts, Switzerland</td>
</tr>
<tr>
<td>RFC-PC230IT</td>
<td>Power Cord, 230 Volts, Italy</td>
</tr>
<tr>
<td>RFC-PC230DEN</td>
<td>Power Cord, 230 Volts, Denmark</td>
</tr>
<tr>
<td>RFC2000-FS</td>
<td>Foot Switch</td>
</tr>
<tr>
<td>RFC2000- CO₂-10</td>
<td>Medical Carbon Dioxide Gas, CO₂, Cylinder 10 Pack</td>
</tr>
<tr>
<td>RFC2000- CO₂-5</td>
<td>Medical Carbon Dioxide Gas, CO₂, Cylinder 5 Pack</td>
</tr>
<tr>
<td>NS2000</td>
<td>NovaSure® Impedance Controlled Endometrial Ablation Disposable Device Kit</td>
</tr>
<tr>
<td>NS2007</td>
<td>NovaSure® Kit: 3 NovaSure Impedance Controlled Endometrial Ablation Disposable Devices packaged with 3 SureSound devices (available in USA only)</td>
</tr>
<tr>
<td>SOUND12</td>
<td>SureSound: 12 devices (available in USA only)</td>
</tr>
<tr>
<td>300001</td>
<td>Biohazard Kit</td>
</tr>
</tbody>
</table>

Warranty

Hologic warrants the original purchase of the NovaSure® RF controller shall be free of defects in material and workmanship when used as intended under normal surgical conditions and in conformance with its instructions for use and maintenance instructions. The obligation of Hologic under this warranty shall be limited to the repair or replacement, each at no charge, at the option of Hologic within one year from the date of purchase, if examination shall disclose to the satisfaction of Hologic, that the NovaSure RF controller does not meet this warranty.

THIS WARRANTY IS MADE IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND ALL OTHER OBLIGATIONS AND LIABILITIES ON THE PART OF HLOGIC. HLOGIC NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF A NOVASURE RF CONTROLLER. THIS WARRANTY SHALL NOT APPLY TO A NOVASURE RF CONTROLLER OR ANY OTHER PART THEREOF WHICH HAS BEEN SUBJECT TO ACCIDENT, NEGLIGENCE, ALTERATION, ABUSE, OR MISUSE, NOR TO ANY NOVASURE RF CONTROLLER THAT HAS BEEN REPAIRED OR ALTERED BY ANYONE OTHER THAN AN AUTHORIZED HLOGIC SERVICE PERSON, MAKES NO WARRANTY WHATSOEVER WITH REGARD TO ACCESSORIES OR PARTS USED IN CONJUNCTION WITH THE NOVASURE RF CONTROLLER AND NOT SUPPLIED AND MANUFACTURED BY HLOGIC. THE TERM “ORIGINAL PURCHASER”, AS USED IN THE WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON OR ORGANIZATION AND ITS EMPLOYEES, IF APPLICABLE, TO WHOM THE NOVASURE RF CONTROLLER WAS SOLD BY HLOGIC. THIS WARRANTY MAY NOT BE ASSIGNED OR TRANSFERRED IN ANY MANNER.

Should any NovaSure RF controller become inoperable after the one year period of this warranty or should damage occur which is not covered under the terms of this warranty, Hologic will upon request, repair the NovaSure RF controller, if possible, for an appropriate handling and repair charge.

WARNING: Dropping the RF controller voids the warranty and could damage the controller beyond repair. We strongly recommend a stable cart which includes strapping or stabilizing the controller to reduce the risk of being dropped. Please use extra care if transporting the RF controller to an off-site facility. If you have any questions regarding the RF controller, please call 1-800-442-9892 or (508) 263-2900.

Technical Support and Product Return Information

Service representatives

Should the NovaSure RF controller become inoperable, contact Hologic technical support for instructions and a return materials authorization number (RMA #). Clean and repack the controller appropriately and return it for repair or servicing to the authorized locations listed below. If the controller is not under warranty, an appropriate handling and repair charge will be established at receipt and examination of the NovaSure RF controller.

For service, technical support or reorder information, contact, in the United States:

Hologic, Inc.
250 Campus Drive
Marlborough, MA 01752 USA
Phone: 800-442-9892 (toll-free) or 508-263-2900
Fax: 508-229-2795
www.hologic.com

NOTE: Any disposable device-related incident or problem, which is believed to represent a safety issue, should be reported to Hologic technical support or the Authorized European Representative.

Hologic UK Ltd.
Link 10, Napier Way
Crawley, West Sussex RH10 9 RA UK
Phone: +44 (0) 1293 522 080
Fax: +44 (0) 1293 528 010

Federal law (USA) restricts this device to sale by or on the order of a physician with appropriate training.
Service returns

Read these instructions prior to returning any used/unused potentially defective product to Hologic.

Contact Hologic Technical Support if the NovaSure disposable device or RF controller fails to operate as intended. If product is to be returned to Hologic for any reason, Technical Support will issue a Returned Materials Authorization (RMA) number and biohazard kit if applicable.

Return RF controllers according to the instructions provided by Technical Support. Be sure to clean the RF controller before returning it and include all accessories in the box with the returned unit.

Return used or opened disposable devices according to the instructions provided with the Hologic-supplied biohazard kit.

Hologic and its distributors and customers in the European Community are required to comply with the Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC). Hologic is dedicated to meeting country specific requirements related to the environmentally sound treatment of its products. Hologic’s objective is to reduce the waste resulting from the disposal of its electrical and electronic equipment. Hologic realizes the benefits of subjecting such WEEE to potential reuse, treatment, recycling or recovery to minimize the amount of hazardous substances entering the environment. Hologic customers in the European Community are responsible for ensuring that medical devices marked with the following symbol, indicating that the WEEE Directive applies, are not placed into a municipal waste system unless authorized to do so by local authorities.

Contact Hologic Technical Support to arrange for proper disposal of the RF controller in accordance with the WEEE Directive.
Federal Law (USA) restricts this device to sale by or on the order of a physician with appropriate training.

NovaSure®
Impedance Controlled Endometrial Ablation System

Instructions for Use and Controller Operator's Manual